The incentive to develop this journal and the society was to develop the research and study of evolutionary biology in Europe.
we must understand evolution and our interaction with other species, to obtain a better basis of understanding”.

From a more personal perspective, your research has seen you win numerous awards yourself over the years, including the Marcel Benoist Prize in 2015. Does winning these awards make all your work feel worthwhile or are they just an extra bonus for you?

I always enjoy conducting research and my work was already recognised before receiving the award, so I see it more as an added bonus. I think it is a fantastic recognition and every researcher naturally likes to be recognised.

ESEB hold a congress once every two years. How successful are these events and how important are they to ESEB as a society as well?

These events are extremely successful. The previous ESEB congress was in Lausanne, and we had to limit the number of participants. We are now reaching a stage where we have approximately 1,400 people applying, and for many places, it’s difficult to host an event with such a large number of people. Therefore, those meetings are extremely successful to the point that they become almost too large.

Fast-forwarding ten years into the future, what kind of state would you like the field of evolutionary biology to be in? Are there any areas you are particularly excited about over the coming years?

I would hope to see that there’s more interaction between different fields and evolutionary biology. I can think of at least three different fields. One is molecular biology. When talking to a medical practitioner, I would point out that, “Humans have evolved; therefore, we must understand evolution and our interaction with other species to obtain a better basis of understanding”. For example, with the AIDS virus, people have now realised it’s evolving. We need phylogenies (a phylogenetic tree is a branching diagram or “tree” showing the inferred evolutionary relationships among various biological species or other entities) to understand where viruses come from. So that’s one field that is developing – the interaction between evolution and medicine.

The same is also true with agriculture. The animal species we are consuming have greatly evolved over the last thousands of years because us humans have selected species to be more productive.

The third field linked to evolutionary biology that is also very interesting, is molecular biology. I think there is a lot to benefit by having more interaction between evolutionary ecologists and molecular biologists. People have started to realise that there are many ways in which an organism can regulate gene expression. All these processes evolved by natural selection, and I am sure there is still a lot to learn about the selective forces acting on gene regulation and the evolution of our genomes.

• For more information on evolutionary biology and the European Society for Evolutionary Biology (ESEB), please visit their website at www.eseb.org.

Humans have evolved; therefore, we must understand evolution and our interaction with other species, to obtain a better basis of understanding.”

From a more personal perspective, your research has seen you win numerous awards yourself over the years, including the Marcel Benoist Prize in 2015. Does winning these awards make all your work feel worthwhile or are they just an extra bonus for you?

I always enjoy conducting research and my work was already recognised before receiving the award, so I see it more as an added bonus. I think it is a fantastic recognition and every researcher naturally likes to be recognised.

ESEB hold a congress once every two years. How successful are these events and how important are they to ESEB as a society as well?

These events are extremely successful. The previous ESEB congress was in Lausanne, and we had to limit the number of participants. We are now reaching a stage where we have approximately 1,400 people applying, and for many places, it’s difficult to host an event with such a large number of people. Therefore, those meetings are extremely successful to the point that they become almost too large.

Fast-forwarding ten years into the future, what kind of state would you like the field of evolutionary biology to be in? Are there any areas you are particularly excited about over the coming years?

I would hope to see that there’s more interaction between different fields and evolutionary biology. I can think of at least three different fields. One is molecular biology. When talking to a medical practitioner, I would point out that, “Humans have evolved; therefore, we must understand evolution and our interaction with other species to obtain a better basis of understanding”. For example, with the AIDS virus, people have now realised it’s evolving. We need phylogenies (a phylogenetic tree is a branching diagram or “tree” showing the inferred evolutionary relationships among various biological species or other entities) to understand where viruses come from. So that’s one field that is developing – the interaction between evolution and medicine.

The same is also true with agriculture. The animal species we are consuming have greatly evolved over the last thousands of years because us humans have selected species to be more productive.

The third field linked to evolutionary biology that is also very interesting, is molecular biology. I think there is a lot to benefit by having more interaction between evolutionary ecologists and molecular biologists. People have started to realise that there are many ways in which an organism can regulate gene expression. All these processes evolved by natural selection, and I am sure there is still a lot to learn about the selective forces acting on gene regulation and the evolution of our genomes.

• For more information on evolutionary biology and the European Society for Evolutionary Biology (ESEB), please visit their website at www.eseb.org.

Humans have evolved; therefore, we must understand evolution and our interaction with other species, to obtain a better basis of understanding.”

From a more personal perspective, your research has seen you win numerous awards yourself over the years, including the Marcel Benoist Prize in 2015. Does winning these awards make all your work feel worthwhile or are they just an extra bonus for you?

I always enjoy conducting research and my work was already recognised before receiving the award, so I see it more as an added bonus. I think it is a fantastic recognition and every researcher naturally likes to be recognised.

ESEB hold a congress once every two years. How successful are these events and how important are they to ESEB as a society as well?

These events are extremely successful. The previous ESEB congress was in Lausanne, and we had to limit the number of participants. We are now reaching a stage where we have approximately 1,400 people applying, and for many places, it’s difficult to host an event with such a large number of people. Therefore, those meetings are extremely successful to the point that they become almost too large.

Fast-forwarding ten years into the future, what kind of state would you like the field of evolutionary biology to be in? Are there any areas you are particularly excited about over the coming years?

I would hope to see that there’s more interaction between different fields and evolutionary biology. I can think of at least three different fields. One is molecular biology. When talking to a medical practitioner, I would point out that, “Humans have evolved; therefore, we must understand evolution and our interaction with other species to obtain a better basis of understanding”. For example, with the AIDS virus, people have now realised it’s evolving. We need phylogenies (a phylogenetic tree is a branching diagram or “tree” showing the inferred evolutionary relationships among various biological species or other entities) to understand where viruses come from. So that’s one field that is developing – the interaction between evolution and medicine.

The same is also true with agriculture. The animal species we are consuming have greatly evolved over the last thousands of years because us humans have selected species to be more productive.

The third field linked to evolutionary biology that is also very interesting, is molecular biology. I think there is a lot to benefit by having more interaction between evolutionary ecologists and molecular biologists. People have started to realise that there are many ways in which an organism can regulate gene expression. All these processes evolved by natural selection, and I am sure there is still a lot to learn about the selective forces acting on gene regulation and the evolution of our genomes.

• For more information on evolutionary biology and the European Society for Evolutionary Biology (ESEB), please visit their website at www.eseb.org.