Manganese (Mn) is the fifth most abundant metal in the Earth’s crust, widely used in metal alloys and batteries, but difficult to produce. Current Mn production methods have high energy consumption and CO₂ emissions. Professor Jafar Safarian from the Norwegian University of Science and Technology (NTNU) developed the HAlMan process: a novel, sustainable way of producing Mn, ferromanganese, and manganese–aluminum alloys. The HAlMan process offers a cleaner conversion of Mn oxides to Mn metal or high-value alloys in the presence of hydrogen, while recovering energy.

It is widely known that metals have many uses in our everyday life: in their pure form, for example as gold jewellery; or in the form of alloys (mixtures of metals with or without the presence of non-metallic substances). Some examples of alloys used for everyday activities are stainless steel or cast iron pots and pans, white gold jewellery, or coins made of bronze. More recently, the use of various metals and compounds has expanded into battery making, which has made the demand for specific materials increase exponentially.

Safarian developed a method to produce Mn and its alloys with significantly reduced energy consumption and CO₂ emissions. The process of sourcing specific metals to create certain alloys is not always straightforward, or even based on abundance. One metal that is becoming more and more difficult to obtain in the required tonnage is manganese. Manganese (Mn) is an element widely known for strengthening aluminum cans. It is also necessary for the production of steel and steel alloys based on iron and Mn. The oxide of manganese – manganese dioxide (MnO₂), is used to make batteries. Mn can be mined in the form of ore (oxides or carbonates) from readily available natural resources, with around 21 million tons of Mn ore mined in 2020. However, mining has caused environmental concerns around deforestation, contamination of soil and water streams, and disturbance of natural habitats. As such, there is an emerging need to come up with sustainable ways of producing Mn, especially given the tonnage required in industry.

Traditional production methods
The traditionally used method to produce Mn or Mn alloys from Mn oxides (MnO₂ and Mn₂O₃) is via reduction of the oxide (meaning removing the oxygen) in a submerged arc furnace. Mn oxides need to be reduced to Mn metal. Traditionally done through smelting Mn oxides with carbon to result in a carbothermic reduction. This results in an Mn-containing alloy (Mn ferroalloy), carbon oxides, and slag, which is the residual matter. This process can be significantly improved with hydrogen.
The HAlMan method uses the produced energy to substitute energy requirements down the line, in this way closing the energy loop.

The HAlMan process

Safarian has validated the proposed method experimentally and illustrated the improvement in energy and emission saving computationally. Based on experimental results, the proposed method results to products of suitable purity while saving about 1.5 tons of CO₂. It also sees an almost 50% reduction on energy consumption per ton of ferromanganese alloy produced. Through previous research, Safarian showed that the byproducts, containing a percentage of Mn, MnO, and aluminum, can be treated to recover some of the metals, leading to an even more sustainable process.

Next, Safarian is looking to test the HAlMan process in a pilot study to confirm the results from the experimental and computational stages. The HAlMan process will be further studied in lab scale and pilot tested in a new Innovation Action project as part of the Horizon Europe programme (HAlMan project EU) with the contribution of 18 partners from academia, research organisations, SMEs and industry. The project was initiated in January 2023 and will be implemented within four years.

Energy consumption to produce metals by HAlMan process.

Personal response

How did you come up with the idea of developing this process?

I love to research future sustainable metallurgical technologies, and this idea is a result of original thinking based on using fundamental knowledge. In addition, research activities into the use of hydrogen for metals production, manganese ferroalloys processes (my PhD research), and the valorisation of industrial waste such as aluminum scrap and dross for many years have been important.

Could this process be used to produce different metals and alloys?

Yes, the process is flexible and can be applied to produce different metal quantities and introduce even new types of bulk Mn alloys for further applications in industry.

Which could be the limiting factors for scaling up this process to industrial implementation?

The limiting factor may be convincing the industry to shift from the conventional process, developed from many decades ago, to a new process. The advantages of HAlMan process regarding sustainability are important and motivating. Can slag be reprocessed or reused further than already discussed?

The produced slag byproduct of the HAlMan process has significant amount of aluminum oxide (Al₂O₃), which is formed in the aluminothermic reduction step, and this Al₂O₃ can be recovered as a feedstock for Al metal production. A carbonate residue is generated along with alumina recovery from the slag, which is consumable. Valuable. In recent years I have conducted significant research in this field. Between experimental and computational research, which one do you prefer and why?

I think both are important and good research has a combination of both. I like experimental work and I do believe that any idea must be tested in lab. Computational research, however, is important to evaluate the results, plan for further experiments, analyse the process, etc.

For more information, visit the HAlMan process in SAF website.