
Categorical data consists of frequencies of observations that fall 
into two or more categories. The categories can be organised in 
one dimension, eg, the number of votes attracted by each of four 

political parties, to form a one-way table. If we add a second dimension, 
such as gender, then we have a contingency table showing how men and 
women vote. 

The chi-square test is used to compare observed frequencies with 
expected frequencies according to a specific hypothesis. The one-way 
table can be tested for goodness of fit, while the contingency table can 
be tested for association (or independence) of two variables. 

While more than 100 different statistical tests have been devised for 
all types of data, only around 30 of them regularly appear in research 
publications. The chi-square test is the most popular test for categorical 
data and appears in thousands of publications annually across all 
scientific disciplines. Professor Peter Cahusac at the Department of 
Pharmacology and Biostatistics, College of Medicine, Alfaisal University, 
Saudi Arabia, explains why the chi-square test is most often not the best 
test to use. 

Most popular isn’t always best
We all know that being popular doesn’t always mean being correct, or 
even the best. We will examine the mathematical assumptions needed 
for the test, and some of the history about statistical inference. But first, 
let’s look at a couple of examples. 

Example 1: Does the addition of suet improve the taste of mince pies?
Twenty-five participants were involved in a study to determine whether 
adding suet to the mincemeat in mince pies affected taste. Only 5 
received pies made with suet and 20 received pies without suet. The 
contingency table, showing how many participants thought their pie 
tasted good or not, is given below:

OBSERVED Taste Good

Suet

Yes No
Yes 4 1 5
No 6 14 20

10 15 25
Table 1

To interpret the data correctly, we need to know whether the proportions 
of those saying the pies tasted good versus not good was different 
across the two groups of participants. The proportion of participants 
saying that suet pies were good was 0.8 (4/5), compared with 0.3 (6/20) 
for non-suet pies. But we should also consider the proportions in the 
columns: 0.4 (4/10) of the participants that said the pies that tasted 
good had suet, versus only 0.067 (1/15) of the participants who said the 
pies that did not taste good had suet. 

The null hypothesis typically states that there is no difference. So, if 
there was no difference in the row-wise and column-wise proportions, 
we would say that there is no association between the suet and taste 
variables, ie, adding suet doesn’t affect the pies’ taste. 

The total number of pies that did and didn’t taste good (10 & 15) and the 
number of pies made with and without suet (5 & 20) are known as the 
marginal totals. To help us test for any association we need to know, 
given the marginal totals, what we would expect each of the 4 cells to be 
if those proportions were identical. 

In the following table, we calculate the expected cell values for all 4 cells 
using the multiplication rule for the probability of the joint occurrence of 
2 independent events. The top left entry gives a probability of:  = 
0.08 and we multiply this by the total number of people tasting the pies: 
0.08×25=2. 

EXPECTED
Taste Good

Suet

Yes No
Yes 2 3 5
No 8 12 20

10 15 25
Table 2

For convenience and simplicity in this example, all the expected values 
are integers. We can carry out a number of different analyses of these 
data. Here are the results for some of them:
1  Chi-square analysis: X² (1)=4.167, p=0.041
2  Chi-square analysis with continuity correction:  

X² (1)=2.344, p=0.126
3  Fisher’s exact test: p=0.121
4  Likelihood ratio test (LRT): G(1)=4.212, p=0.040
5  Log likelihood ratio test: S=2.1
6  Log likelihood ratio test for variance: Svar=0.9

So what can we conclude?
The first analysis uses the general formula for chi-square: 

 (1)

The table has r rows and c columns, where we denote the observed 
count in the i th row and j th column as Oij and the expected value in the i th 
row and j th column as Eij. 

There are restrictions on this analysis. Some say that all expected values 
should be at least 5, while others claim that up to 20% of expected 
values can be less than 5. In our example, half of the cells have expected 
values less than 5, disqualifying this particular analysis. This means 
that analyses 1 and 2 listed above should not be done or reported. 
This now leaves us with tests 3, 4, 5, and 6.
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Chi-square test assumptions
The chi-square test is based upon the assumption that the calculated X² 
values follow an approximation to the χ² distribution. The χ² distribution 
is theoretical. Mathematically, it produces a continuous range of 
numbers. For individual cells in a table, it is assumed that their values 
follow a normal distribution because χ² is the sum of squared normal 
deviates ∑z² , where each cell provides a z value.

These assumptions are only reasonable when the numbers in most 
of the cells are sufficiently large. Having small numbers in the cells 
leads to a couple of related problems. First, there will only be a limited 
number of possible contingency tables that can be drawn up with 
those counts. This means that only a limited number of X² values can 
be calculated, breaking up the continuous nature of the χ² distribution. 
Secondly, the distribution of values is so limited that it cannot follow the 
normal distribution required for the summation of the z² values across 
the table. 

However, even if the analysis meets the requirements mentioned above, 
probably the shortest paper in statistics, published by Ken Williams in 
1976, gives a further, rather technical and mathematical, reason why X² 
should not even be calculated. It reveals that if the difference between 
the observed and expected frequencies is equal to the expected 
frequency, in any cell within the table, this would violate the logarithmic 
expansion of the Mercator series (en.wikipedia.org/wiki/Mercator_
series). In contingency tables, this happens when the observed 
frequency for any cell is 0. Williams concludes saying: 'As it is now 
computationally easy to calculate XML  [likelihood ratio test]  there seems 
to be no reason for the continued use of Pearson’s approximation [the 
chi-square test], especially as it is frequently not valid to do so anyway.'

Nothing has changed in almost 50 years since that was written. 
Students continue to be taught the chi-square test for categorical data, 
and researchers continue to give X² and associated p values for their 
data. Some influential statistical textbook authors made great efforts 
to persuade readers to use likelihood ratio tests. While some of the 

e: pcahusac@alfaisal.edu
 linkedin.com/in/peter-cahusac-

0839b445/

Bio
Professor Peter Cahusac completed his 
Cstat from the Royal Statistical Society, 
and a Masters in Applied Statistics from 
Oxford University, 1992. He has held 

Details

The most appropriate test for categorical data, 
when we are interested in the fit of proportions, 
is the likelihood ratio test.

term 0×ln(0) = 0. The log likelihood for the expected values given the 
observed values would be:

 (3)

Their ratio which gives us the log likelihood ratio:

 (4)

In his classic book titled Likelihood, Anthony Edwards FRS promoted 
the likelihood approach and made considerable efforts to clarify the use 
of the chi-square test, stating that the chi-square test is assessing the 
variance of the frequencies, rather than their fit to proportions specified 
by a hypothesis. We are usually interested in how the frequencies fit 
a particular hypothesis, rather than their variance in the table, and he 
argued that the log likelihood ratio was optimal for this purpose. 

It all depends on the question you are trying to answer. In example 1, 
we were interested in whether the data suggested that there was 
an association between suet and how good the pies tasted. The 
proportions did not support the hypothesis that the two variables were 
independent, and therefore that hypothesis was rejected. We obtained 
S=2.1, which means moderate evidence (see Table 5) that there is an 
association between whether or not suet was used in the pies and 
their appreciation. In example 2, we are suspicious that the data fit the 
hypothesis too well, that is, their variance is smaller than expected. 

To interpret S we should refer to this table:
S Likelihood ratio Interpretation for comparing hypotheses
0 1 No evidence either way
1 2.7 Weak evidence
2 7.4 Moderate evidence
3 20.1 Strong evidence
4 54.6 Extremely strong evidence
7 1097 More than a thousand to one

14 1202604 More than a million to one

early reluctance may have been due to the then difficulty in calculating 
logarithms, nowadays all scientific calculators have a logarithm button, 
and spreadsheet functions include logarithms.

Example 2: Do 312 randomly selected cards have the expected red and 
black proportions for court and pip cards? 
To increase their house edge, casinos often use multiple decks of cards 
for blackjack. Let us say that we selected the 312 cards at random 
from a population of millions of cards produced by the card factory. We 
might be surprised if we got the following results:

Type of card

Colour

Court Pip
Black 36 119 155
Red 36 121 157

72 240 312
Table 3

When we do our 6 analyses we get:
1  Chi-square analysis: X² (1)=0.004, p=0.951
2  Chi-square analysis with continuity correction: X² (1)=0.000, p=1
3  Fisher’s exact test: p=1
4  Likelihood ratio test (LRT): G(1)=0.004, p=0.951
5  Log likelihood ratio test for proportions: S=0.002
6  Log likelihood ratio test for variance: Svar=2.3

Even though there is a 3:10 ratio of court to pip cards in the population, 
would we really expect exactly 72 court cards and 240 pip cards in our 
randomly selected sample? Also, exactly 36 black and 36 red court 
cards, really? Probably not, we would rightly be suspicious that the 
cards were not randomly selected. 

With sampling variability we would expect something like this:

Type of card

Colour

Court Pip
Black 43 110 153
Red 37 122 159

80 232 312
Table 4

The first table looks ‘too good to be true’. How do we measure our 
surprise or suspicion that the cards were not randomly selected?

Likelihood
Likelihood was first defined by Sir Ronald Fisher more than 100 years 
ago. It is a distinct concept from probability though it is proportional to 
it. He suggested that hypotheses could be compared using likelihood 
ratios. Later in his life Fisher endorsed the likelihood ratio approach: 

'For all purposes, and more particularly for the communication of 
the relevant evidence supplied by a body of data, the values of the 
Mathematical Likelihood are better fitted to analyse, summarize, and 
communicate statistical evidence…'

He suggested that the log likelihood ratio is particularly convenient 
because independent sources of statistical evidence can literally be 
added together. 

For a table of categorical data, using the same symbols as previously 
(equation 1) we would use this to calculate the log likelihood (LL) for the 
observed values given the same observed values:

 (2)

Should any observed frequency be zero, then by convention the 
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Data that is too good to be true
Edwards derived a formula that gives an S value for the variance of the 
frequencies. This was adapted for the more general case where df is the 
degrees of freedom for the table:

 (5)

The X² is calculated in the usual way using equation 1. For our example 2 
data we obtain Svar=2.3. Referring to Table 1 tells us that we should be 
moderately suspicious of foul play. 

Take-home messages
Different tests can be used on the data, depending on the question we 
want to answer. The most appropriate test for categorical data, when 
we are interested in the fit of proportions, is the LRT. This approach 
avoids violating assumptions, and avoids using any corrections. Even 
better is the S value which is an objective measure of evidence between 
competing hypotheses. Unlike p value calculations, S is not affected 
by transformations of variables. Additional data can be added and 
independently collected data – eg, in a meta-analysis – can be summed.
In categorical analyses, S values are additive, which is especially useful 
for sub-tables of a large contingency table and in multidimensional 
contingency tables.

While the chi-square test should very rarely be used for categorical 
data, it can be used when we think that the data is too good to be true, 
ie, where the variance of the data is suspect. An alternative is to use 
Svar which incorporates X² in its formula and doesn’t require the use of 
p values.

Finally, Professor Cahusac’s jamovi 
module, jeva, can be used for log 
likelihood analyses (see blog.jamovi.
org/2023/02/22/jeva.html). There is 
a great introduction to the likelihood 
approach provided by Dr Mircea 
Zloteanu from Kingston University 
London: mzloteanu.substack.
com/p/a-secret-third-way-
likelihoodist.

Table 5: Interpreting log likelihood ratio values (S) for one hypothesis over another. 
The second column gives likelihood ratio eS. Negative values of S mean that the 
strength of evidence for the second hypothesis is greater than the first hypothesis. 
Table adapted from a meta-analysis paper by Steven Goodman.
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